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Abstract

These notes aim to calculate via FFTLog formalism the one-loop redshift space galaxy power
spectrum in cosmologies in the presence of massive neutrinos. We compare the FFTLog & Di-
rect computations and present a performance test for our public Python code FOLPSy (https:
//github.com/henoriega/FOLPS-nu), which computes the multipoles of the redshift space power
spectrum in a fraction of second for massive neutrinos cosmologies as well as for the Einstein-de
Sitter (EdS) case.
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1 General framework: fk-kernels

It is important to develop consistent theories and accurate methods to account for massive neutrinos
because ongoing and forthcoming galaxy surveys such as the Dark Energy Spectroscopic Instrument
(DESIY), Euclid?, and the Legacy Survey of Space and Time (LSST?) will become increasingly accurate,
opening the possibility of measuring the absolute scale of neutrino masses and their mass hierarchy in
the coming years. Furthermore, proper modeling of massive neutrinos will provide information about
the structure formation and also help to reduce systematic errors in future analyses.

Massive neutrinos introduce an additional scale that causes the linear growth function D, and the
logarithmic growth rate f to become scale- and time-dependent

dln Dy (k,t)
dln—;(t) (L)

In the large scale limit, massive neutrinos behave like CDM. This implies that, on large scales, the
logarithmic growth rate in ¥ ACDM cosmologies reduces to the usual form in ACDM cosmology, fo(t) =
f(k — 0,t). A direct consequence of working in the presence of massive neutrinos is that the velocity
field acquires an extra scale-dependent contribution in linear and non-linear orders. In particular, at

linear order, the density contrast d., and the divergence of the velocity field ., are non-local related by*

f(k, t)
fo(t)
resulting the same at large scales, but suppressed by a factor f(k)/ fo on smaller scales than the character-
istic free-streaming scale introduced by massive neutrinos. In general, the non-linear order contributions

of the density contrast and velocity divergence are given by®

f(k,t) =
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but when considering massive neutrinos, the kernels F,, and G,, are modified due to the free-streaming
scale through f and via some functions that must be obtained from second-order differential equations.
For example, at linear order in massive neutrino cosmologies we have

f(k,t)
fo)

Finding the higher-order kernels is more demanding compared to those in Einstein-de Sitter (EdS)
cosmology and represents the result of a lot of work. In ref. [1] the authors developed a Lagrangian
Perturbation Theory (LPT) framework to study the clustering of CDM-baryons in the presence of massive
neutrinos, finding a self-consistent and well-behaved theory. Then, in ref. [2] the authors mapped the
LPT kernels to the Standard Perturbation Theory (SPT) framework. Here, we explicitly write the kernels
up to second-order
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where A, B(ky,ks,t) are scale- and time-dependent functions, which are solutions to second-order dif-
ferential equations. Then, the pertubative kernels F,, and G,,, recieve two additional contributions:
one that includes the logarithmic growth rate f(k,t), which is scale-dependent because of the neutrino
free-streaming, and scale- and time-dependent functions which arise because f? = 2,,, does not hold in
massive neutrinos cosmologies. However, when the conditions A, B = AM»=0 = 1 and f(k) = fy are
satisfied, the usual EdS kernels are recovered.

In the general case of massive neutrinos cosmologies, the calculation of the loop corrections is com-
putationally slow since at each step of the integration we have to solve differential equations to find
the values of A, B, as a consequence, this procedure inhibits employing efficient sampling algorithms to
estimate cosmological parameters. However, in ref. [2] the authors identified that considering only the
growth rate functions within the perturbative kernels, while keeping the other pieces equal to their EdS
values, is a good approximation to the full case (within 0.3 % for & < 0.5 h Mpc~!), due to the dominant
contribution of massive neutrinos to the loop corrections comes from the growth rate factors rather than
the computationally costly functions. Hence, it is convenient to define the fk-kernels as

FI G™(ky, ko, ..., k,) = F,, G (ky, ko, ..., k) . (1.8)
A=B=AMy=0
From now on we will work with these kernels, which have two important advantages for efficient evalua-
tion: there is no need to solve differential equations and one can exploit FFTLog methods to speed up
even more the loop computations.

2 FFTLog formalism

The one-loop power spectrum involves the computation of several integrals of the form (3.3)—(3.5). In
order to simplify and speed up loop calculations, we adapt a tool that decomposes the linear power
spectrum into the sum of complex power laws, allowing us to find analytical solutions for the loop
integrals. This approach is known as the Fast Fourier Transform in Log-k (FFTLog) formalism [3-6],

N/2

Puk)y= > cpk T, (2.1)
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where we have split the discrete approximation to the linear power spectrum in [kmin, kmax] logarithmic
spaced with N sampling points. The Fourier coefficients ¢,,, and exponents 7,,, are given by

( N-1

” m —(v+inm)

m = P me ,
C mm go L ( N log(kmax/k'min)

with W,,, = 1 for all m except for W, /o = 1/2, this last factor prevents endpoints from being counted
twice. Notice that Pr (k) represents the approximation for the linear power spectrum, while the eq. (2.2)
uses the exact linear power spectrum Pr (k). We will continue using the same notation throughout
the document. Moreover, the parameter v is known as bias and in principle can be any real num-
ber, but its value can be used to improve the convergence of the loop integrals. All these parameters
{Emins kmax, N, v} do not depend on cosmology and we refer to them as the FFTLog parameters. Then
the FFTLog formalism decomposes the linear power spectrum into a cosmology-dependent piece ¢,, and
power laws that are independent of cosmology.

On the other hand, the loop integrals involve convolution kernels that can be rewritten as simple
multiplications, which together with the FFTLog formalism, allow us to reduce the loop integrals to
expressions with the form [7, §],
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in terms of the Gamma function I', where we have employed the shorthand notations fp =(2m)73 [dPp

and 219 = 21 + 29 with 21, 29 complex numbers.

The above formalism allows transforming the evaluation of the loop integrals into multiplications of
cosmology-independent matrices/vectors and cosmology-dependent terms, speeding up the loop calcula-
tions compared to the usual way (direct computation). Moreover, as the matrices/vectors do not depend
on cosmology, they can be pre-computed and stored, while the cosmology-dependent terms can be found
quickly through the usual Fast Fourier Transform (FFT) [6, 9].

On the other hand, notice the function I(z1, z2) vanishes if one of the arguments is zero or a negative
integer. For example, consider zo = 0. In this case, eq. (2.3) becomes fp p~ 2% = 0. On the other hand,

it is well known that fp Pr(p) diverges. It seems contradictory because the linear power spectrum can
be decomposed into power laws, and as a consequence of applying eq. (2.3) we would find zero as the
final result. The latter suggests that I(z1, 22) gives inappropriate results when the integral is divergent.
This is because I(z1, 22) calculates only the finite part of the loop integral. Therefore, if the integral we
are interested have an ultraviolet (UV) or infrared (IR) divergence, to get the correct answer, one simply
has to add the UV/IR contribution by hand [6, 10].

3 Omne-loop power spectrum

The linear density power spectrum satisfies® Pr (k) = PCLbM(k) = (dep(k)dep(K'))’. Then, for massive
neutrinos cosmologies (fk-kernels), the linear cross-spectrum and the linear velocity power spectrum are

Pc%,ae(k):fjﬂff)PLw), P o) = <f]€’“)> PL(k). (3.1)

In general, the power spectrum up to one-loop has the following form [11],
PP (k) = Pl (k) + P (k) + P (k), (3.2)

where throughout the document a,b stand for the density contrast or the velocity divergence and its
combinations. Then, the explicit expressions for the one-loop power spectrum in fk-kernels are

PP (k) = Py (k) +2 /

P

[F*(p.k — p)]” PL(p)PL([k — pl) + 6 / Ff(k, —p.p)PL(k)PL(p),  (3.3)

o

sz;,lggp(k) = Pl so(k) + 2/ F3*(p,k — p)G¥(p,k — p)PL(p)Pr(|k — p|)

+3 / [F§k<k, o)l }’“) G (k. —p,p>] PL(k)PL(p). (3.4)
PEIoR () = PE (k) +2 / (G5 (p.k — p)]” Pu(p)PL (K — p|) + 6 / GE<(k, —p. p)Jc}(’j)PL(k)PL(p»

(3.5)

Notice that to compute the one-loop power spectrum, we have to perform the loop integrals (3.3) — (3.5),
which are computationally demanding, especially when considering massive neutrino cosmologies. Thus,
it is important to develop alternative numerical methods such as the FFTLog to reduce the computa-
tional time [3]; otherwise, it would be prohibitive to run efficient sampling algorithms for the estimation
of cosmological parameters.

6(.)" indicates that we have divided by (27)3 times the overall momentum delta function.



UV and IR divergences

Now, let us discuss the convergence properties of eqgs. (3.3)—(3.5). Observe the loop integrals are
conformed by the convolution of some kernels and linear power spectra. The behavior of fk-kernels
under the UV and IR regimes are

2 2
UV limit (k <p): F3* G¥(p,k—p) — o= Fi* GE(k,—p,p) — =l (3.6)
ot fk fk k: fk fk k2
IR limit (p<< k) F2 7G2 (pvk_p)%ga F3 aG3 (kv_p7p)_>]? (37)

Then, when considering the FFTLog formalism, eq. (2.1), the convergence of the loop integrals is deter-
mined by the bias parameter v. For example, if we take the UV/IR limit and consider Pr (k) ~ k¥, one
can find that the P%? contributions are UV convergent for v < 1/2 and IR convergent for —1 < v. Then
for —1 < v < 1/2 the P?? integrals are convergent, and consequently, the use of eq. (2.3) return the
same results as with the traditional direct computation. Nevertheless, when we choose v values outside
the convergence range, the Pgb2 integrals become UV or IR divergent. Then, the eq. (2.3) does not guar-
antee the correct answer because the divergent pieces are not captured by dimensional regularization.
Therefore, to obtain the correct answer, the corresponding UV or IR piece must be added to the result
obtained through the FFTLog formalism [6, 10].

A similar analysis for contributions PL}E’ finds these loop integrals are divergent for v > —1 and
v < —1, i.e. the integrals never converge. Thus, based on the v value, we have to add the UV or IR
divergence, as appropriate For example, for v > —1 the loop integrals of P13 are UV divergent. In this
limit the contribution P.? A PRLIIE

00 d 1 k
PR =3 [ r) [ do [Facn il o -p)

—snb) [ r) [ Kl — 322 4 102% § ()

-1 63 fO
1 — 1122 + 102* f(p) (k‘*)
+ —i—(’)
63 fo ) p? p*
_ Tdp 46 f(k) 4 [f(p) k*
==3pub) [ LR {(189 T Eio -l (3.8)
Then, the leading UV contribution is
23 f 2
Pclbjégv(k)* (21 J(”o) \1/+21 v> k* Py (k), (3.9)
with
2 L [T p 2 L7 pL 3.10
0\1/:@0 p Pr(p), %Z@O p Pso(p). (3.10)

Notice that we have kept only the leading UV contribution, which is valid in the range —1 < v < 1. For
biases v > 1, one has to consider the subleading UV terms.

Similarly, if we consider biases v < —1, the IR terms are required. For these biases, the leading IR
contribution of P}s, takes

Pylsg (k) = =P (k)k?oy, (3.11)

which holds for —3 < v < —1. For smaller biases, the subleading IR contributions are necessary.
Returning to P?2, we find that for the density-velocity spectra, the leading UV and IR contributions
are



3k* [ f(p) Pi(p
Faso (F) = 196772/0 dp fo) Zg )7 (3<v<3) (3.12)

22,1R
Pyse (k) = Pcb so(k)k? 0, (-3<v<-1) (3.13)
In the table 1 we summarize all the leading UV and IR contributions with the range where they become
necessary. Notice that P22 and P(}E are individually IR divergent for v < —1. Furthermore, due to the
equivalence principle the IR divergences cancel, which implies the loop contribution Pic;)‘)p = PGQE + Palg’

become convergent for —3 < v < —1 [12]. Thus, when considering P;(;Op in this range, no IR or UV
contributions are needed.

UV and IR divergences

Contribution UV div IR div
22, UV 4 p? 22 1R
Plss = 1o6:2 Jo d ;gp) Plyss (k) = PL(k)k?og,
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UV _ k IR o
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Table 1: Leading UV/IR contributions and the range of the bias where they are valid.

FFTLog evaluation for the one-loop power spectrum

In this section, we will calculate through the FFTLog formalism the different contributions to the one-
loop power spectrum, egs. (3.3)—(3.5).

Density contributions

We start with P3%55(k), which is given by

PEuh) =2 [ [F5o.k = p))* PLlo)Pu(lk ) (3.0.14)

with
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where we have written the expansion at eq. (3.0.15) compactly since all the summands in the kernel

above have the form k—2(m1+n2)p2m |k — p|?"2 with ny,ne € {~2,-1,0,1,2}.

Using the FFTLog decomposition (2.1), we can write the approximation to P2 g 255 (k) as follows

1
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where v and vy are complex number defined throughout all the document by

1 _ 1 .
V1£_§(V+Z77m1) and ng—i(y—&—mmz).

Appealing to the loop integral (2.3), one can write the approximation for be% ss(k) as

2v -2
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where v15 = 1 + 5, throughout this document we adopt the notation v4..., = vy + - - + v,.

Now it is turn to focus our attention to the contribution P33 i 55(K), which is given by

PI5s(k) = 6 / Ff(k, —p, p)PL (k) Po(p),

where

(3.0.17)

(3.0.18)

(3.0.19)

(3.0.20)

(3.0.21)



ka(k -p p) — _ kG _ k4 19k2|k B p|2 p4 _ |k - p|4
3 252k — p[2p*  504|k — p|2p? 168p* 72k2|k — p|2  18k2p2

[k —pl° 5k? N k—pf* 11k 4 p* 197

72k2p* ' 168k — p|? 12k2 252p*  63p2  18k2  504[k — p|?

61|k — p|? B 5k — p|* 1

+

504p2 63p* 252
2 3
Z Z fiz.65(n1, na)k~2mFn2)pn g — p|2n2, (3.0.22)
ni=—2ng=-—1
with
ng = —1 0 1 2 3
_1 _1u 19 _5 1 —
252 252 168 63 T2\ ™M~
1 _4 6 _1 .
504 63 504 18
f13’55(n17 ng) = % _ﬁ % 0 0 0 . (3023)
19 1
504 18 0 0 0 1
1
= 0 0 0 0 2

Then, through the egs. (2.1) and (3.0.22), the approximation for P} b, 35s(k) can be written as

1
—2(n1+n
PCb 65 o 6PL Z Cma Z f13 %9 7’L1, n2 e L pQ(ul—n1)|k - p|_2n2 ’ (3024)
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Using the eq. (2.3) to solve the integral in the last equation, we find
Prss(k) = k> Pk Zcml 1 Mg s6(v1), (3.0.25)

with
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6

n

f1s,66(n1, =1)I (1 —na, 1). (3.0.26)
2

In the last equality, we have used that the function I(z1, 22) vanishes if one of its arguments is zero or a
negative integer. The latter expression can be reduced even more, as follows

1+ 91, tan(vym)
4 287T(V1 + 1)1/1(V1 — 1)(1/1 — 2)(1/1 — 3) '

where we have used the properties of the Gamma function.

M3z s5(v1) = (3.0.27)

Density-velocity contributions

We move our attention to the density-velocity spectra, where

P2,,(k) = / Ff(p,k - p)G(p.k — p)PL(p)Pr(lk — p|)

Ik =PD p, ()P, (k- p).

P
—o [ Klp(pk- p)“’}fj)PL(p)Pmkpn +2 [ Kl (k- p) -

(3.0.28)



In the second equality of eq. (3.0.28) we have used F£*(p,k — p)GE(p,k — p) = (f(p)/ /o) Kgg (p,k—p)+
(/(lk = pl/fo) K55~ (0. k — p), where
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Notice that under the interchange p — k — p, the above kernels satisfy Kgg_p (k—p,p) = Kg;’ (p,k—p),
this fact help to reduce the expression for be% so(k) to a single term”

PZu0l) = 4 [ Ky (0.~ )P so(0)PL(k ~ ) (3.0.31)
P

where we have used P} s5,(k) = (f(k)/fo) Pr(k). By the same arguments as before, we can rewrite the

kernel Kg;,’ (p,k—p) as

2
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In order to apply the FFTLog method in the eq. (3.0.31) we need a similar expansion to eq. (2.1) for
the cross-spectra PcLb,ae (k) = (f(k)/fo) Pr(k), so we approximate

N/2
Phsok) =Y cfktim, (3.0.34)
m=—N/2
where the coefficients ¢, are computed via the eq. (2.2), but changing Py, (k) — (f(k)/fo) Pr(k). Then,

the approximation of P3s,(k) can be written as

P3so(k) = 2k Z Cﬁuk_zylefiae(VhVz)szk_2V27 (3.0.35)

mi,ma

TThis is possible because the original form of Pfl? s0(k) is symmetric under the interchange p — k — p.
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On the other hand, the contribution P}’ s, (k) has the following form
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In the last equality we have divided G£*(k, —p, p) into two pieces, one of them proportional to f(p)/ fo
and the other proportional to f(k)/fo. The latter piece was combined with F3(k,—p,p) (f(k)/fo),
resulting in the new kernels
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Then, the approximation for P13 i 50(k) takes the form

1 f(k y 5 .
Pliiso(k) = Sk Py (k) <J(CO)Z Cmy k™2 MY 5o () + 3 el K2 MR o (v >>, (3.0.42)

mi ma

with

2 3
M13 s0(v1) =6 Z Z f1359 (n1,n2)I (1 —n1, —n2)

2
Z 1359 nla_ )I(Vl_nlzl)
= M13,50(V1)

9 -7 tan(vym)

4 287(vi + V(v — 1) (v —2) (v - 3)°

(3.0.43)

The equality Mif:‘;’w(ul) = M{é”w(ul) holds because the first column of eqgs. (3.0.39) and (3.0.41) are
identical and represent the only nonzero contribution to the vector M3 s9. This allows us to write the
approximation for P}2s,(k) as

Pryso(k) = %kSPL(k') Z (chf(]j)cml + cfn1> k=2 M{;ao(l’l)- (3.0.44)

mi

Velocity contributions

We will now focus on the velocity contribution to the one-loop power spectrum, where

PZog(k) = 2/ (G55 (p, k — P)]2 Pr(p)PL(k — pl)

fo 2
=2 [ k= PR P p)
0
k _
+2/ka pfp( k p)f(‘ fl;))f(p)PL(p)PL(k_pD
0
2
vz [ Ky -0 PP v, (3.0.45)
0
where
KIoo (ke — py = L N R v
o ’ 196]k — p|[*p? 49k —p[*p? " 196]k — p[>p* 196k — p[?p>  49]k — p[*
15Kk — pP? LA R U Pt
392p" 98k —p[* 196k —p|2  784p' ' 392p2 ' 196k — p|*
3p? 15k —p|>  25k-—p[* 11
- . 3.0.46
T o6k —plP T 30207 T 7sdpt 7ed4’ (3.046)
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. S kS S 37k 13k2p?
Kgg pfp(p7k_p): —odd 42 —at 22 4
98|k —p[*p* 196k — p|*p* 196k —p|*>p* = 392[k —p[?p* = 196]k — p|

1367k —pl> 9k 13k okt 13k gp?
196p* 196|k — p|* 196]k —p|?> 196p* 196p> 392|k — p|?
4 k —pl|? k —pl* 1
196|k — p|* 392p2 196p4 196
k8 3k6 kS 3kt 15k2p?
Kggz(P:k—p): yywi 1,2 2.4 2,2 i 1
196k — p|*p 196k — p|*p 49|k — p|?p 196k — p|?p 392|k — p|
CRk-pP 1k 20k 3k 3K 25!
49pt 784k —p|* 392k —p|2  98p* 196p2  784|k — pl*
15p2 k — pl|2 k — plt 11
3020k —p|z2 | 196p2 196p* 784

In the second equality of eq. (3.0.45) we have split [ng(p,k - p)}2 in three pieces, each of them pro-
portional to the growth rate evaluated at different wavenumbers. Notice that under the interchange
P — k — p, the above kernels satisfies Kgék"’)z (k—p,p) = Kefgz (p,k — p), so we can rewrite the
eq. (3.0.45) as

f _
P2, (k) = 4 / K2 (0,% — D)PE 4y(p) Pr(|k — p|) + 2 / KL5 0 (. — p)PE 35 (0) P 3ok — D).
P P

(3.0.49)
where
/ S
2 2 —_
K (0.k—D)= Y fifpe(ni,na)k T2 |k — p|22, (3.0.50)
ni,ne=—2
ne = —2 1 0 1 2
1 _ 1 3 1 1 _
196 19 98 29 196\ ™= 2
3 _3 _3 3 0 _1
196 196 196 196
fo2 11 29 11
foSge(nine) = —7m1 3z —ma 0 0 ° (3.0.51)
15 15
—395  ~33 0 0 0 !
25
= 0 0 0 0 2
and
2
Kog "ok =p) = D0 fagih ™ (mama) k2 p i - pf, (3.052)
ni,ma=—2
ng = —2 —1 0 1 2
1 1 9 13 5
98 T 196 196 196 TTo6\ ™ =2
1 3T _13  _9 1
196 392 196 302
Freeof 9 13 19
2;05 P(ni,ne) =| —1d5 —1i%5 196 0 0 , (3.0.53)
13 9
756~z 0 0 0 !
5
-2 0 0 0 0 2
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where we have used PJ s5,(k) = (f(k)/fo) Pr(k) and P 44(k) = (f(k )/fo)? Pr(k). On the other hand,
similar to the expansion carried out in eq. (3.0.34), we approximate

N/2
Pcb 00(k) = Z C?ﬁszy+in”’Lv (3054)
m=—N/2
where the coefficients ¢/ are computed in the same way as ¢,,, but changing P, (k) — (f(k)/fo)* Pr(k).
Then, using the above equations we can find the approximation for P35 (k),

Plog(k) = 2k Z Cfnflk72ylM2f;7299(V17V2)0m2k721/2 + K Z kT 2V1M2f§9§fp(1/1,V2) Tk,

Cry

mi,ma iy
(3.0.55)

with

My, v2) = [98vivs + T3 (205 (Twa — 8) +1) = 11 (20a(Tug + 17) + 58) — 12(1 - 205)?]
21/12 — 3

I 3.0.56
X 196y1(1/1 + 1)y2(1/2 + 1)(21/2 — 1) (V17 1/2)7 ( )

and

MPE TP (1, v0) = [nf(m +3) 4 1 (Twa(Tve — 1) — 10) + 1o (211 — 10) — 37}
% 2V12 -3
981/1(1/1 + 1)1/2(1/2 + 1)

I(l/l, VQ). (3057)

Finally, we compute the contribution Pclb?:ge(k) to the one-loop velocity power spectrum

cb 09 = 6/ Gfk fj(fk:)PL(k)PL(p)
—o (L2 ) b [ Kyt —p. )P0 + 10 bt | iz -ppPki). 3059

Observe that have decomposed GE¥(k, —p, p) in two pieces, one of them proportional to f(k)/fo and the
other proportional to f(p)/fo, where

Kl (k. —p.p) = — k° LM 19K’k —p|* p* 19k —p|*
063 252|k — p|2p* = 63|k — p|2p? 168p* 252k2|k — p|2  504k2p2
|k — p|® k2 5k —pl? 11k 41k2 p? p?

+

72k2pt 42k — p|? 168k2  252p*  504p2  504k2 + 63k — p|2
13)k—p|2 Hk—p|* 5

126p2 63p* 126
2 3
Z Z f{:l{oe(nlv ng)k~2(mitna) 2 p|nz (3.0.59)
’I’L1:72 ’I’L2:71
Ko pp)———F K K|k — p|? spt 5lk—pl*
oo™ 126|k — p|2p* 72|k — p|?p? 168p* 504k2k — p|2  126k2p?
5k — p|° k2 5k —p2 k* k2 5p? 11p?
+ | p| i i | P| n n P p

504k2p* ' 168k — p|? 84k2 72p% T 252p2  126k2 504k — p|?
1k —p* 11k —p[!
504p2 504p* 504
= K15 (k,—p,p)

ST e s(ma,na)km 2t 2k — ppPre, (3.0.60)

n1:—2 7’L2:—1
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with

ng = —1 0 1 2 3
_ 1 4 19 5 1 —
252 252 168 63 72\ ™M=~
1 _ 4 13 _ 19 0 1
63 504 126 504 -
fie _| L _5 5
fiz.00(n1,m2) = a2 126 168 0 0 0 ) (3.0.61)
1 1
1
— 555 0 0 0 0 2

while f{;ée(nhng) is given by eq. (3.0.41). Then, the approximation for Pclb?:%(k) gives

D, f k f k —2v —2v P
A0 =L pu ) (L2 S ekt + E el b2 bl o) ) (302)
ml ml
where
t
M{:I;,ee(yl) = an(v17) (3.0.63)

CUr(n + V(v — D)y — 2)(h = 3)°
while leiée(yl) is given by the eq. (3.0.43).

We have reduced the loop integrals to simple matrix multiplications. Furthermore, the matrices Mso
and vectors M3 depend on the FFTLog parameters rather than the cosmological parameters, which
significantly impacts the computational time of an Markov chain Monte Carlo (MCMC) exploration.

4 One-loop power spectrum of biased tracers

It is well known that the spatial clustering pattern of observable tracers and CDM-baryons is not neces-
sarily the same [13]. In general, there is a bias between the density contrast of tracers §(x) and the bulk
of CDM-baryons d.4(x), which depends on the tracers and their redshift. To model the bias, we follow
the biasing scheme presented in ref. [14] and recently generalized in ref. [15] to cosmologies containing
additional scales. In this scheme, the large scale tracer velocities are assumed to be unbiased, so they
follow the same geodesics of the CDM-baryons fluid, while tracer density contrast is biased by

1 1 . 1 1 .
5(x) = c56ep + 5Cs2 62 + ce28% + 5 63, + 552 Seps® + cy + cost + 505 53 + stochastic terms, (4.1)

where s2 = 54j8ij, st = 845t;; and s% = 84j8jkSki, With

sith) = (852 2o, Y stk 0 = (B2 20 ) (12
and
n(k) = Ocp (k) — fj(f(]f)&cb(k), (4.3)

their Fourier representations. Notice that s? and s3 are second-order and third-order operators, respec-
tively. While st is a third-order operator since n vanishes at linear order via eq. (1.2). Furthermore, the
operator v is defined as

o) = (k) - 2 (2200 - otm)). (4.4
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which is a third-order operator for EdS kernels since n(?) = ?92 41 62 and f(k) = fo. However, for

ACDM kernels the expression for 72 does not holds, causing the operator v to receive second-order
contributions. In the case of massless neutrinos, these second-order contributions can be absorbed into
the s2 and 62 operators since they are degenerate. So, in this case, ¥ can be conceived as a third-order
operator [16]. However, when considering massive neutrinos, the last statement is not true, but since its
influence is fairly small, we can treat 1) as a third-order operator.

From the bias expansion (4.1) and after renormalization, one finds that the one-loop power spectrum
for biased tracer is

Pss(k) = biPy 5P (k) + 2b1b3 Py, 0, (k) + 2b1b2 Py, () + b3 Pz (k)

+ 205bs2 Pop, (k) + b2 P2, (K) + 2b1b3ni05 (k) Pr(k), (4.5)
Pso(k) = b1 Py 56" (k) + ba Py, (k) + b2 Py, 0(k) + bsnio (k)PX 5(k), (4.6)
Pyo(k) = Pl lesP (k) (4.7)

where by, by, b2 and bz, are the bias parameters, while the quantities ijlggp(k) ijlggp(k:) and

Pclblggp(k) are given by egs. (3.3)—(3.5). The other contributions are

P (k) = / Fi(p,k — p)P1(p) Py 1k — pl), (-3 <v<-1/2) (48)
Poana / Ff(p.k— p)Sa(p.k —p)PL()PL(k—p)).  (-3<v<1/2) (4.9)
Pa(k) =5 / PL(v)[Pu(k — pl) - Po(p)], (=3 <) (4.10)
Plaalh) = 3 [ Pulo) [Pl =p)Sop k=) = 3P| (-5 (@.11)
P, =5 [ Puto Pk B Sap k- - P (3 (4.12)
Py, 0(k) = /pGEk(ka —p)Pr(p)Pr(|k — pl), (-3 <v<—1/2) (4.13)
Py (k) = / GH(p.k—p)Sa(p.k— PIPLPL(K—pl),  (-3<v<1/2) (41

Additionally, the function o2 (k) is given by,

105 4 8
o3 (k) = /PL [Sa(p,k P) (782( k) — 21) + 63}, (4.15)
where )
(k1 - ko) 1
Sa(ki, ko) = L (4.16)

Following similar steps to those performed for the previous case of one-loop matter power spectrum,
we find

P(k) =k Y cm k" Mp(v1,v3) em, k™2, (4.17)

my,msa
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where P refers to the previous contributions P,p,, Pblb@, Pbg> Pbegz and szz, while the matrices
involved are

(2V12 - 3)(7V12 - 4)
28V1V2

(2015 — 3) [14y12(2u2 — 1) + vy (dva(Tvy — 11) = 3) — 1o(14v + 3) + 2}

MPb1b2 (V17V2) = I(V1,1/2>7 (418)

= 1
MPz,leQ (Vh 1/2) 168V1(1/1 T 1)y2(1/2 T 1) (1/1, VQ),
(4.19)
1
Mp,, (v1,v2) = S1(v1, 1) (4.20)
(21 — 3)(2v2 — 3)
MPb2b52 (V17V2) = 121/11/2 I(V17V2)7 (421)

[4((3 +2(vy — 2)v1 ) V2 + (17 — dvy)ivs + 3(vy — 5)1/1) 60w + 63}
361/1(1/1 + 1)1/2(1/2 + ].)

Mp,, (v1,v2) = I(v1,1s), (4.22)

Notice that for the contributions (4.10)-(4.12), we have to subtract the terms Py (0), Py,s ,(0),
Py, (0), respectively.
The FFTLog approximations for the egs.() and () can be expressed as

P(k) =k > e, k7" Mp(v1,v2) cm, k™22, (4.23)

miy,ma

where P stand for B, , , and Py, g, with matrices given by

(2012 — 3) [z/l (141/1(21/2 — 1) — 300 + 39) — 100 — 19}

M = 1 4.24
Pbsz,e (V17V2) 841/1(V1 I 1)1/2(”2 + 1) (1/1,V2), ( )
(7V1 — 4)(21/12 — 3)
]\4}313216 (Vl,l/g) = 141/11/2 I(Z/l,Vg). (425)
Finally, the approximation for the function o3 (k) is
where 45 tan(ml)
an(mv
M, = . 4.26
20 = 3 =3 =2 = D £ 1) (4.26)
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5 Performance and accuracy of the FFTLog formalism
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