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The purpose of these notes is to demonstrate a potential approach to the marginalization of
linear nuisance parameters in an Effective Field Theory of Large-Scale Structure. In partic-
ular, the idea is to show that with the current model and pipeline of the FOLPSν code,1 it is
possible to analytically marginalize over both effective and stochastic parameters.

1 Perturbative model

We employ an Eulerian Perturbation Theory (EPT) up to 1-loop, which includes standard
ingredients such as non-linear biasing, Effective Field Theory (EFT) counterterms, stochastic
noise, and IR resummations. Therefore, the redshift space power spectrum can be expressed
as [1]

PEFT
s (k, µ) = Pδδ(k) + 2f0µ

2Pδθ(k) + f2
0µ

4Pθθ(k) +ATNS(k, µ) +D(k, µ)

+ (α0 + α2µ
2 + α4µ

4)k2PL(k) + c̃(f0σvkµ)
4PK

s (k, µ)

+ Pshot
[
αshot
0 + αshot

2 (kµ)2
]
, (1.1)

where the functions Pδδ, Pδθ, and Pθθ are the tracers 1-loop real space power spectra for the
velocity and density fields. The function ATNS(k, µ) is equivalent to the one introduced in
the TNS paper [2], but with a growth function f(k, t) that depends on both scale and time.
On large scales, this function reduces to f0(t) = f(k → 0, t). The function D(k, µ) arises
from the correlation between the density and velocity fields at fourth order. In fact, this
function is a generalization of the B(k, µ) function introduced in the TNS paper. The second
line is conformed by the EFT contribution and the linear Kaiser effect PK

s (k, µ), while the
stochastic terms are included in the last line.

All of these functions introduce a total of 11 nuisance parameters, where b1, b2, bs2 ,
and b3nl account for biasing. Meanwhile, α0, α2, and α4 are EFT counterterms that model
the backreaction of small scales over large scales and the non-linear map between real and
redshift spaces. Additionally, in the line-of-sight direction, 2-point statistics are dominated
by Fingers of God, which are a non-linear coupling between the velocity and density fields,
with a characteristic scale given by the velocity dispersion σv. This yields the next-to-leading
order counterterm c̃ [3].

The third line in eq. (1.1) includes stochastic parameters that are uncorrelated with
long-wavelength fluctuations. The constant Pshot can be set equal to the Poisson process
shot noise, which is given by PPoisson = 1/n̄X , where n̄X is the number density of tracers.
Alternatively, Pshot can be set to any other constant value that is not relevant since it is
completely degenerate with αshot

0 . We have also introduced a tilt αshot
2 proportional to (kµ)2.

Regarding the set of nuisance parameters introduced above, not all of them are necessary
at the same time. As previously mentioned, the value of Pshot is not relevant and only alters

1https://github.com/henoriega/FOLPS-nu
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the numerical values of αshot
0 and αshot

2 , so it can take any value. Here, we set it to the
Poissonian shot noise value. On the other hand, the counterterm α4 becomes redundant
when only fitting the monopole and quadrupole. Therefore, this counterterm is employed
only when including the hexadecapole in the analysis. Finally, the functional dependence
introduced by c̃ is k4PL(k), which is approximately proportional to k2 at high-k and hence
degenerate with αshot

2 . Therefore, it is common to choose between the use of either c̃ or αshot
2 .

In this work, we fixed c̃ = 0 and used the latter as a nuisance parameter.
Large-scale displacements lead to non-linear damping of spatially localized features in

the power spectrum, such as the BAO, which are not naturally captured by the EPT approach.
Therefore, to adequately describe the spread and degradation of BAO oscillations within EPT,
it is imperative to employ IR resummation methods [4–6]. Since large-scale displacements
affect only the BAO wiggles, a convenient approach is to split the linear power spectrum as
PL(k) = Pnw(k) + Pw(k), where Pnw(k) is the smooth component (non-wiggle) and Pw(k) is
the wiggle component of the linear power spectrum that contains the BAO information.

As a result of the linear power spectrum splitting described above, the 1-loop IR-
resummed power spectrum in redshift space P IR

s (k, µ) becomes [1],

P IR
s (k, µ) = e−k2Σ2

tot(k,µ)PEFT
s (k, µ) +

(
1− e−k2Σ2

tot(k,µ)
)
PEFT
s,nw (k, µ)

+ e−k2Σ2
tot(k,µ)Pw(k)k

2Σ2
tot(k, µ), (1.2)

where PEFT
s (k, µ) is given by eq. (1.1) and is to be calculated using the linear power spectrum

as input, and PEFT
s,nw (k, µ) is computed in the same manner but using as input the non-wiggle

linear power spectrum Pnw(k). In addition, the angle-dependent damping function Σ2
tot(k, µ)

is given by [6],
Σ2

tot(k, µ) =
[
1 + fµ2(2 + f)

]
Σ2 + f2µ2

(
µ2 − 1

)
δΣ2, (1.3)

with

Σ2 =
1

6π2

∫ ks

0
dpPnw(p) [1− j0 (p ℓBAO) + 2j2 (p ℓBAO)] , (1.4)

δΣ2 =
1

2π2

∫ ks

0
dpPnw(p)j2 (p ℓBAO) , (1.5)

where ℓBAO ≃ 105h−1Mpc corresponds to the BAO peak scale, jn represent the spherical
Bessel functions of degree n. The scale ks splits the long and short modes, whose choice is
somewhat arbitrary. We use the value ks = 0.4h−1Mpc.

We have already presented the full 1-loop power spectrum (1.2). However, to compare
with data from simulations or observations, it is more convenient to decompose the informa-
tion in multipoles

Pℓ(k) =
2ℓ+ 1

2

∫ 1

−1
dµ P IR

s (k, µ)Lℓ(µ), (1.6)

where Lℓ are the Legendre polynomial of degree ℓ.

2 Marginalization over linear parameters

Given a dataset d and a theoretical model M parameterized by a set of parameters θ, the
likelihood function L(d|θ,M) describes the conditional probability distribution of the data.
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Specifically, for the model in relevance, the likelihood can be expressed as follows

L(d|θ) = Exp
[
−1

2

(
P

(m)
ℓ (k,θ)− P

(d)
ℓ (k)

)T
Cov−1

(
P

(m)
ℓ (k,θ)− P

(d)
ℓ (k)

)]
, (2.1)

where P
(d)
ℓ (k) are the multipoles extracted from the data, P (m)

ℓ (k,θ) are the multipoles given
by the model, and Cov−1 is the inverse covariance matrix. The parameters θ = {Ω,n}
are the combination of the cosmological parameters Ω and the nuisances parameters n =
{b1, b2, bs2 , b3nl, α0, α2, α4, α

shot
0 , αshot

2 }.2
On the other hand, we can divide the nuisance parameters into two types: bias parame-

ters b = {b1, b2, bs2 , b3nl}, and effective and stochastic parameters α = {α0, α2, α4, α
shot
0 , αshot

2 }.
The latter have the characteristic that they are linear-order parameters at the level of the
power spectrum multipoles. This characteristic allows us to rewrite the multipoles as

P
(m)
ℓ (k,θ) =

∑
i

αi P
(m)
ℓ,i (k, {Ω, b}) + P

(m)
ℓ,const(k, {Ω, b}), (2.2)

where P
(m)
ℓ,i (k, {Ω, b}) ≡ ∂P

(m)
ℓ (k,θ)

∂αi
and P

(m)
ℓ,const(k, {Ω, b}) ≡ P

(m)
ℓ (k,θ)

∣∣∣
α→0

.
Marginalizing over the linear nuisances parameters α and using eqs. (2.1) and (2.2), we

found

L(d|{Ω, b}) =
∫

dαL(d|θ = {Ω, b,α})

=

∫
dα e

− 1
2

(∑
i αi P

(m)
ℓ,i +P

(m)
ℓ,const−P

(d)
ℓ

)T
Cov−1

(∑
j αj P

(m)
ℓ,j +P

(m)
ℓ,const−P

(d)
ℓ

)

=

∫
dα e−

1
2

∑
i,j αiαjL2,ij+

∑
i αiL1,i+L0 , (2.3)

with

L0 = −1

2
Dconst ⋆Dconst, (2.4)

L1,i = −P
(m)
ℓ,i ⋆Dconst, (2.5)

L2,ij = P
(m)
ℓ,i ⋆ P

(m)
ℓ,j , (2.6)

where Dconst ≡ P
(m)
ℓ,const − P

(d)
ℓ is the residual between the model multipoles (for the constant

part) and the data vector, also note we used the shorthand notation A ⋆ B ≡ AT Cov−1B.
Using the multivariate Gaussian integral∫

dnx e−
1
2

∑
i,j xixjAij+

∑
i xiBi =

√
(2π)n

detA
e

1
2
BiA

−1
ij Bj , (2.7)

we found that the marginalized Likelihood takes the form

lnL(d|{Ω, b}) = L0 +
1

2
L1,i · L−1

2,ij · L1,j −
1

2
ln [det(L2)] , (2.8)

where irrelevant constants were omitted.
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Figure 1. Comparison for ShapeFit.
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