Science Lecture:

CPE work within DESI

Cristhian Garcia-Quintero & Hernan Noriega Part 1:

CPE work for BAO DR2 & future perspective

Baryonic Acoustic Oscillations in the fluid

Sound waves propagating in the plasma at around 57% the speed of light.

$$c_s(z) = 3^{-1/2}c \left[1 + \frac{3}{4}\rho_b(z)/\rho_\gamma(z)\right]^{-1/2}$$

Baryonic Acoustic Oscillations in the fluid

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

Longest oscillation, from big bang until ~ time of recombination

$$c_s(z) = 3^{-1/2}c \left[1 + \frac{3}{4}\rho_b(z)/\rho_\gamma(z)\right]^{-1/2}$$

Baryon Acoustic Oscillations measurements

Galaxy & Quasar, Lya BAO and Cosmological Interpretation

GQC

Cosmology parameters from BAO (ACDM example)

Cosmology parameters from BAO (\(\Lambda\)CDM example)

$$\theta_{\rm BAO} = \frac{r_{\rm d}}{D_{\rm M}} = r_{\rm d} \left[\frac{c}{H_0} \int_0^z dz \frac{H_0}{H(z)} \right]^{-1}$$

Cosmology parameters from BAO (ACDM example)

Cosmology parameters from BAO (ACDM example)

Cosmology parameters from BAO (\(\Lambda\)CDM example)

$$\delta z_{\rm BAO} = r_{\rm d} \frac{H(z)}{c} = \frac{H_0 r_{\rm d}}{c} \sqrt{\Omega_{\rm m} (1+z)^3 + \Omega_{\Lambda}}$$

Cosmology parameters from BAO

Error bars reduction by factor of ~2

Tension with SDSS in LRG1 reduced to 2.6σ

LRG+ELG provides the most precise isotropic distance scale measurement: 0.45% (nearly 15σ!)

We now have 2D BAO measurements for QSO

Slight disagreement with DESI and Planck best-fit Λ CDM models.

Hints for evolving dark energy

DESI+CMB: 3.1o

(Planck PR4)

* The current status of this tension is 3.2σ as reported by the SPT collaboration using a combination SPT+Planck+ACT

(See ArXiv: 2506.20707)

+ Pantheon+ SNe Ia: 2.80

(Scolnic et al. 2022)

+ Union3 SNe la: 3.80

(Rubin et al. 2024)

+ DES-SN5YR SNe la: 4.2σ

(Davis & DES collaboration 2024)

CPE dark energy supporting paper: K. Lodha et al. 2025

ArXiv: 2503.14743

CPE neutrinos supporting paper:

W. Elbers et al. 2025 ArXiv: 2503.14744

Plans ahead

Any plans for DR3? Still need to wait and define what the DR3 batch would be, in the meantime, we have DR2 full shape results on the way.

DESI (primarily z<1.5)

 Five year survey + 2.5 year extension aimed at Dark Energy with BAO and RSD measurements

DESI-II (primarily z>2)

 As powerful as DESI, but focused on z>2. Aim for a six year survey with some instrument upgrades

New facility or facilities and new instrumentation

Things to keep in mind for further analyses with DR2 or DR3:

- Cosmological tensions

Discrepancy between DESI and SNe ranges from 1.7 σ to 2.9 σ .

Discrepancy between DESI and Planck is 2.3σ.

New CMB data from ACT got available

C. Garcia-Quintero et al. ArXiv: 2504.18464

Even better, now we have SPT and a 'consolidated' CMB dataset, currently in a 2.8σ discrepancy with DESI BAO DR2.

Latest SPT results
ArXiv: 2506.20707

Things to keep in mind for further analyses with DR2 or DR3:

- Cosmological tensions
- Systematics in the data?

Systematics in SNe la data?

Systematics in the SNe data?

- We may need to wait for ZTF, Rubin, or other reanalyses
- Removing low-redshift data effects the significance of the hints, but do not change the best-fit model drastically

Removing low-z SN

assuming z > 0.1 fit, including the z < 0.1 SN data

full DESY5 best χ^2 barely changes between z > 0.1 and full fit

Systematics in CMB data?

- Systematics in the CMB data?

- Potential issues with τ-reionization?

N. Sailor et al. ArXiv: 2504.16932

Systematics in the BAO data?

- Systematics in the BAO data? I personally do not expect so.

- Replacing some DESI BAO data points with the SDSS ones does not solve the *tension* (ArXiv: 2404.03002)
- Using alternative BAO measurements, e.g. DES, still shows some departures when combined with SNe (see ArXiv: 2503.06712)
- A coherent error in our BAO estimates would need a shift 10X more than allowed given our systematic error budget (see ArXiv: 2503.14738)

- Cosmological tensions
- Systematics in the data?

- Keep checking on other parameters

Other parameters to keep track of? Curvature, modified gravity, etc

DESI+CMB+DESY5 gives a 2.3σ preference for curvature (See also ArXiv: 2505.00659)

CMB same as used in DR2 paper.

Monitor how the neutrino mass constraints behave with more data

Part 2:

CPE and work towards DR2 full-shape

Work done for DR1 & perspectives for DR2

Galaxy Full Shape in a nutshell

We model galaxy clustering in redshift space using full-shape of the galaxy power spectrum. Introduces anisotropy but enables to:

- probe the growth of structures fσs
- test the theory of gravity and dark energy
- constrain the sum of neutrino masses

Galaxy Full Shape in a nutshell

Credit: Claire Lamman and Michael Rashkovetskyi / DESI collaboration

$$\delta_s(\mathbf{k}) = (1 + f\mu^2)\delta(\mathbf{k})$$

Where μ the cosine of the angle between the line-of-sight and the wave-vector k.

Linear order: Kaiser power spectrum

$$P_s^K(k,\mu) = (1+\beta\mu^2)^2 b_1^2 P_L(k), \text{ with } \beta = \frac{f}{b_1}$$

Multipoles:

$$P_0^K(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)b_1^2 P_L(k)$$

$$P_2^K(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)b_1^2 P_L(k)$$

ratio!

To better describe the galaxy clustering, we need to consider:

- EFT counterterms
- IR resummations

- nonlinear biasing
- stochastic terms

Full Shape power spectrum

$$P_s(k,\mu) = \underbrace{P_s^{\rm PT}(k,\mu) + (\alpha_0 + \alpha_2\mu^2 + \alpha_4\mu^4)k^2P_L + ({\rm SN}_0 + {\rm SN}_2k^2\mu^2 + {\rm SN}_4k^4\mu^4)}_{\text{I-loop PT}}$$

+ IR resummations

Full Shape analysis

Direct fitting approach: Full-Modeling

Cosmological parameters are vary directly for a given cosmological model

(as it is done for CMB)

Comparison of Compressed vs Full-Modeling

Λ CDM

Noriega et al 2024a.

Models and codes employed in DR1

Three **power spectrum Effective Field Theory** models considered:

- Velocileptors Maus et al. 2024
- Folps Noriega et al. 2024
- Pybird Lai et al. 2024

One **configuration-space** model:

- EFT-GSM Ramirez et al. 2024

One comparison paper: Maus et al. 2024

KP5 paper: DESI 2024 V

Hector & Pauline, +++

FS key paper: DESI 2024 VII

Dragan, Eva, Mustapha, +++

Credit: Mark Maus, Hernan Noriega, Yan Lai, Sadi Ramirez

Models and codes used in DR1

You can reproduce Y1 full shape results using

https://github.com/cosmodesi/desi-y1-kp

Results DR1 Full Shape

DR1 Full-Shape: Dark Energy constraints

Combining all DESI + CMB + SN

DESI + CMB + Pantheon+: 2.5σ

(BAO: 2.5σ)

DESI + CMB + Union3: 3.4σ

 $(BAO: 3.5\sigma)$

DESI + CMB + DES-SNY5R: 3.80

(BAO: 3.9σ)

20% tighter constraints than **BAO-only**, same preference for w0 >-1, wa <0

DR1 Full-Shape: Modified Gravity (time-dependent)

Phenomenological parameters to test deviations from GR

(mass trajectories)

$$k^2 \Psi = -4\pi G a^2 \,\mu(a,k) \sum_i \rho_i \Delta_i$$

(photon trajectories)
$$k^2(\Phi+\Psi)=-8\pi Ga^2\sum_i(a,k)\sum_i
ho_i\Delta_i$$

$$\mu_0 = 0.11^{+0.45}_{-0.54}$$

 $(DESI (FS+BAO)+BBN+n_{s10})$

$$\left.\begin{array}{l}
\mu_0 = 0.04 \pm 0.22, \\
\Sigma_0 = 0.044 \pm 0.047,
\end{array}\right\}$$

DESI (FS+BAO)+CMB-nl+ DESY3 $(3 \times 2\text{-pt})$.

Massive neutrinos impact:

i) the expansion history of the Universe

Transition from relativistic to nonrelativistic

ii) the growth of structure:

Large thermal velocities washout structure formation on small scales

$$\frac{\Delta P}{P} = -8f_1$$

Assuming $\sum m_{\nu} > 0 \,\mathrm{eV}$

Constraints depends on the prior!

BAO-alone can NOT constrain neutrino mass

Assuming
$$\sum m_{\nu} > 0 \,\mathrm{eV}$$

Constraints depends on the prior!

BAO-alone can NOT constrain neutrino mass

Assuming
$$\sum m_{\nu} > 0 \, \mathrm{eV}$$
 Constraints depends on the prior!

BAO-alone can NOT constrain neutrino mass

For Year 1 we got

$$\underbrace{\sum m_{
u} < 0.071\,\mathrm{eV}\,\,(95\%)}_{\mathrm{DESI}\,+\,\mathrm{CMB}}$$

(15% better than BAO-only: $0.082 \,\mathrm{eV}$)

The very tight **constraints** on the **total neutrino mass** mainly come from **geometry***

how the degeneracy is broken: strongly affect neutrino constraints

^{*} except for lensing

DESI is able to get neutrino constraints without including CMB data

DESI DR1 (FS+BAO) + BBN +
$$n_{s,10}$$
:
 $\sum m_{\nu} < 0.409 \,\text{eV}$ (95%).

In this mass range, information on Mnu derives from the free-streaming effect on the shape of the power spectrum rather than from the amplitude or background

Elbers et al 2503.14744

Perspectives for DR2

Full-shape modeling Modified gravity constraints Neutrinos

Perspectives for DR2 Full-Shape: Bispectrum

Beyond 2-point

$$B(k_1, k_2, k_3) = \langle \delta(k_1) \, \delta(k_2) \, \delta(k_3) \rangle'$$

- At large scales, the bispectrum constrains second-order biases b2 and bs.
- Helps break degeneracies between nuisance and cosmological parameters.
- Mainly improves constraints on As and
 Mnu

Different implementations:

Sugiyama, Scoccimarro,...

ShapeFit (SF)
Full-Modeling (FM)

Perspectives for DR2 Full-Shape: Scale-dependent MG

Exploit scale-dependent MG models, which affects the spectra a certain scales

Certain scales -> MG

Large scales -> GR

fifth-force, or Yukawa potential with fine range

For these models, **constraints** are obtained from **fo8** and the **full shape of the spectra**;

this is essentially what full-shape analysis is designed to do

Perspectives for DR2 Full-Shape: Neutrinos

SPT paper 2506.20707

$$\Sigma m_{\nu} < 0.081 \,\mathrm{eV}$$
 for SPT-3G D1 + DESI, $\Sigma m_{\nu} < 0.048 \,\mathrm{eV}$ for CMB-SPA + DESI.

CMB-SPA + DESI, rule out **NH** at **97.9**%, and **IH** at **99.9**%

Exploit alternative probes of neutrino mass that are less sensitive to background evolution (which is degenerate with neutrinos).

Systematics in CMB?

tau ~ 0.09 reconciles LCDM and neutrino mass constraints

N. Sailor et al. ArXiv: 2504.16932 Tanisha et al. ArXiv: 2504.21813

